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Mass transport in three-dimensional water waves 
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A spectral scheme is developed to study the mass transport in three-dimensional 
water waves where the steady flow is assumed to be periodic in two horizontal 
directions. The velocity-vorticity formulation is adopted for the numerical solution, 
and boundary conditions for the vorticity are derived to enforce the no-slip 
conditions. The numerical scheme is used to calculate the mass transport under two 
intersecting wave trains ; the resulting flow is reminiscent of the Langmuir circulation 
patterns. The scheme is then applied to study the steady flow in a three-dimensional 
standing wave. 

1. Introduction 
The objective of the present paper is to study the mass transport induced by three- 

dimensional water waves. These steady flows, although small in magnitude, play a 
significant role in the migration of particles and sediments. Dore (1976) derived the 
equations governing the mass transport outside the Stokes boundary layers. These 
equations describe the transport of the steady vorticity through vortex stretching 
and rotation, convection by the mean flow, and viscous diffusion. The ratio of the 
wave amplitude to the viscous length, 6, controls the balance between the diffusion, 
and the vortex stretching and convection. Diffusion dominates when 6 is large; the 
governing equations can then be linearized by discarding the nonlinear terms. When 
6 is small, as is usually the case, the mass transport acquires a boundary-layer 
character. The complexity of the equations, and the limited computing power 
available in the past restricted previous numerical simulations to two-dimensional 
problems only. 

In a previous paper, Iskandarani & Liu (1991) presented a spectral method for 
the solution of the two-dimensional mass transport equations in partially reflected 
waves. The scheme employed the stream function-vorticity formulation, and was 
based on a spectral expansion of the dependent variables. No stream function exists 
to describe three-dimensional flows. Their approach must be modified to study the 
mass transport induced by three-dimensional water waves. 

A spectral method based on the velocity-vorticity formulation, where the 
unknowns are the three components of the steady velocity and vorticity vectors, is 
presented herein. The steady flows are periodic in the two horizontal directions. 
Spectral methods, which rely on Fourier expansions of the dependent variables, 
become an ideal choice to resolve the horizontal dependency of the flow. Chebyshev 
polynomial are chosen to resolve the vertical dependency. The advantages of the 
Fourier expansion are many. First, the Fourier functions ensure the periodicity of 
the flow in the horizontal directions, no boundary conditions are needed on the 
lateral boundaries. Second, the no-slip conditions on the tangential velocities can be 
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transformed analytically into constraints on the vorticity. Third, Chebyshev 
polynomials and Fourier functions can be fast Fourier transformed (FFT) ; the 
coefficients of the nonlinear terms in the equations can thus be computed efficiently 
with three-dimensional FFTs. 

The solution procedure hinges on three key steps. The first step is the determination 
of the vorticity vector from the vorticity transport equation. The second step is the 
derivation of adequate boundary conditions on the vorticity at the boundaries where 
the tangential velocity components are prescribed. The third step is the integration 
of the vorticity vector to obtain the corresponding solenoidal velocity vector ; this 
problem has been termed the Cauchy-Riemann problem (Fix & Rose 1985). The last 
two steps turn out to  be intimately connected, and hold the key to the solution of the 
vorticity equation. 

We begin by listing the governing equations and boundary conditions of the 
problem; these have been derived in the earlier work of Longuet-Higgins (1953), 
Dore (1976), and Liu (1977). We then examine the Cauchy-Riemann problem in $3, 
where we transform the no-slip conditions on the velocity to conditions on the 
vorticity. In  $4, we present the numerical solution of the vorticity equation. The 
numerical scheme is then applied to study the mass transport under two intersecting 
wave trains, $5, and under a three-dimensional standing wave, $6. 

2. Governing equations 
The present formulation will be limited to flows where the first-order motion is 

harmonic in time ; the Stokes drift and the Lagrangian velocities are then divergence 
free. The equation governing the transport of the second-order steady vorticity 
(Dore 1976) can be rewritten in the so-called rotational form 

(1) 

in which the vectors 0 and urn refer to the steady vorticity and to the mass transport 
velocity respectively. The mass transport velocity is a Lagrangian quantity, and is 
related to the Eulerian streaming velocity through (Longuet-Higgins 1953) 

u, = u+ us, (2) 

where u and us refer to the Eulerian streaming and the Stokes drift respectively. The 
vorticity is defined in terms of the Eulerian velocity 

w = v x u  (3) 

62VZO + v x (urn x 0)  = 0,  

and the latter satisfies the continuity equation 

v-u = 0. (4) 

I n  this paper, we shall solve ( l ) ,  (3), and (4) for the steady vorticity and Eulerian 
streaming velocity under three-dimensional small-amplitude waves. The first-order 
wave motion is assumed to  be prescribed and periodic in both horizontal directions 
(x, y). The water depth is constant; the still water surface is at z = 0, and the seabed 
a t  z = - h. The vorticity components in the x-, y- and z-directions will be denoted by 
w x ,  WY and wz,  and the velocity components by u, v and w. The subscript s will 
designate the components of the Stokes drift, while the superscripts s and b will refer 
to quantities evaluated on the surface and seabed respectively. 
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Using the existing theories, the Eulerian streaming and the steady vorticity can be 
readily obtained inside the Stokes' boundary layers adjacent to the free surface and 
the seabed (Longuet-Higgins 1953; Liu 1977). The boundary conditions for the 
steady flow outside the Stokes layers ( - h < z < 0) can be found by evaluating the 
Stokes layer solutions at  the outer edge of the boundary layers. Thus, the steady 
horizontal vorticity components are prescribed on the free surface 

(5) 

and the horizontal Eulerian streaming velocity components are prescribed on the 
seabed 

d ( 5 ,  y, z = 0) = W Z , S ( 2 ,  y), w y z ,  y, z = 0) = w Y , S ( z ,  y), 

u ( x , ~ , z = - ~ )  = u b ( z , y ) ,  ~ ( z , y , ~ = - h )  =vb(z ,y) .  (6) 

The vertical velocity component vanishes on the seabed, 

W ( X ,  y, z = - h )  = 0, (7) 

and the free surface is a material surface, hence 

w(2, y, z = 0) = -w,(2, y, 2 = 0) = W S ( X ,  y). (8) 

Furthermore, because of its definition, (3), the vorticity must be solenoidal, 
particularly a t  the seabed and free surface, 

V - w  = 0 a t  z = 0, -h. (9) 

Because the mass transport is periodic and the Chebyshev polynomials are defined 
over the interval [- 1,1], we introduce the new independent variables 6 = k,x,  
5 = k,  y and q = ( 2 / h )  z+ 1 ,  where 2n/kz and 2n/k ,  are the wavelengths of the steady 
motion in the z- and y-directions respectively. Two expansions of the dependent 
variables are employed. The first is a Fourier expansion whose coefficients depend on 
the vertical coordinate 

n--N m=-M 

where f is any one of the steady velocity or vorticity components ; this expansion is 
mainly used in the integration of the Cauchy-Riemann equations. Note that since f 
is real, we have f - m ,  -n = fz, It where the asterisk denotes a complex conjugate ; it  is 
thus sufficient to focus on the modes m = 0 , 1 , .  . . , M ,  and n = 0, f 1 , .  . . , & N .  
Variables with two subscripts, like f m V n ( q ) ,  refer to the coefficients of the Fourier 
expansion of the function f(E, g, 7). The second expansion is the Chebyshev expansion 
of each Fourier coefficient 

L 

f m ,  n(7) = Zfi, m ,  n T(q)* 
1-0 

Its coefficients, fi,,,,, are referred to as the Fourier-Chebyshev coefficients of the 
function f(E,  5 , ~ ) .  

3. Cauchy-Riemann problem 
The three-dimensional Cauchy-Riemann problem consists of integrating the 

vorticity definition, equation (3), to find a velocity that satisfies (4), and whose 
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normal component is prescribed a t  the boundary ( 7 )  and (8). The existence and 
uniqueness of the solution to this system of equations is guaranteed, provided that 
the vorticity vector w is solenoidal (Fix & Rose 1985). Fasel (1976) and Gatski, 
Grosch & Rose (1989) presented different approaches for the solution of the 
Cauchy-Riemann problem. The former solves three Poisson equations for each 
component of the velocity, while the latter consider the Cauchy-Riemann problem 
as a set of first-order PDEs. In the present work, the Fourier decomposition reduces 
the partial differential equations to ordinary differential equations that can be 
integrated analytically. 

Applying the Fourier decomposition to (3), (4), ( 7 )  and (8), each Fourier mode 
(m, n) should satisfy the following set of equations : 

w",, = ink, vmv - imk, urns n, (12) 

2 dwm, n 
h dy  

ink, urns + imk, vm9 12 +- -, 

w m , n ( ~  = - I )  = 0, W m . n ( y - 1 )  = W L , n .  (14) 

Again, we emphasize that the vorticity has to be solenoidal for the above system of 
equations to hold : 

Rewriting (10) and (11) as 

dy = $h(ink, wm, + w",, n), 

and differentiating the continuity equation, (13), with respect to y, we can eliminate 
the horizontal velocity components from the resulting equations. Thus, a second- 
order ODE for the vertical component of the velocity is found: 

d2wm~n-h2wm~n++h2[ink,w~,n-imk,wZ,,n] = 0, 
dy2 

h2 = +h2(n2k: + m2ki). (19) 

If the vorticity field is given, the above equation can be solved analytically for the 
vertical velocity component wm, n. Equations (16) and (17) can then be integrated for 
the horizontal velocity components. Two different solutions for wm, emerge 
according to  whether A is zero or not, the case A + 0 is treated first. 
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3.1. h =k 0 

The solution to (16)-(18) subject to boundary conditions (14) is 

h2 h 
wrn, .(7) = - [ink, w k ,  n(r) - imk, w;, ( r ) ]  sinh A( r - 7) dr + - B sinh h(7 + 1 ) , 

4h l 1  2A 

where B is given by 

and C ,  and C, are two unknown constants of integration that give the horizontal 
velocity components on the seabed (7 = - 1). 

To determine C ,  and C,, we substitute the expressions for the velocity components, 
(20), (21) and (22), in (13) and (12) to obtain the following equations: 

ink, C ,  + imk, C, + B = 0, 

ink,C,-imk,C, = wZ,,,(v = - 1 )  = wkpn, 
(24) 

(25)  

where B is given in (23). Equations (24) and (25) can be solved for C, and C,  when 
A * O :  

ink,B+ imk, wkPn), (26) c =-( 

imk, B- ink,w~~,).  (27) C,=-( 

h2 
4h2 

h2 
4h2 

So far, C ,  and C,  are two integration constants not related to any prescribed 
velocity on the seabed, and solely determined by the solenoidal vorticity vector, the 
vertical velocity at  the boundary, and the continuity requirement. However, in the 
present problem, the horizontal velocity components on the seabed are known; C ,  
and C,  should be equal to the prescribed velocity u ; , ~  and v:,~ in (6). These are 
requirements that impose constraints on the vorticity field. Setting C, and C, equal 
to uk, and v k ,  in (24) and (25), solving for wZpn and B, and equating the resultant 
expression for B to the expression in (23), we obtain the following relations: 

wZ,,,(q = -1) = inkxvb,,n-imkyuk,n, (28) 

4h w“, 2 
=- * +- [ink, uk, + irnk, vk,, ,I. (29) 

h2 sinh2h h 

We reiterate that (28) and (29) are the conditions needed on the vorticity to enforce 
the values of the horizontal velocity components on the seabed. 
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3.2. h = 0 
The analysis in the previous section is correct as long as A + 0. When h = 0, (12) gives 

w"oo = 0. (30) 

Hence the spatial mean of the vertical vorticity component is identically zero. 
Moreover, the continuity equation, (13), implies that wo, = 0 since the vertical 
velocity vanishes on the seabed. The horizontal velocities can be obtained by 
integrating (10) and (11): 

(31) u0,o = c,+-S_lo:.o(r)dr, h % , o  = cv--S_lw:,o~r)drl h 2 2 

where G, and C, are again two constants of integration. Unlike the case h + 0,  the 
continuity equation, the definition of the z-component of the vorticity, and the 
solenoidality of the vorticity vector are trivially satisfied and cannot be used to 
determine C, and C,. 

Defining qx and qy as the averaged horizontal flux components (per unit width) in 
the x- and y-directions respectively, 

we substitute the expressions for uo,o and v ~ , ~ ,  (31), in the above definitions to get 

If the averaged horizontal flux components qx and qy  are given, we can find C ,  and 
C,  from the above equations. On the other hand, if both the horizontal velocity 
components on the seabed and the horizontal flux components are prescribed, the 
zeroth mode of the vorticity vector must satisfy 

ri 

The last two equations are the boundary conditions needed on the zeroth Fourier 
modes of the vorticity to impose the horizontal velocity components on the seabed. 
As in the two-dimensional case (Iskandarani & Liu 1991), we will assume that a 
return current has been established so that the average fluxes of particles in the x- 
and y-directions are equal to zero. Hence, 
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where (uJ0, and (vJ0, denote the zero Fourier mode of the Stokes drift in the 2- and 
y-directions respectively. 

We have completed the solution of the Cauchy-Riemann problem, and derived 
analytical expressions for the Fourier coefficients of the velocity in terms of the 
Fourier coefficients of the vorticity. The expressions for the Fourier-Chebyshev 
coefficients can be found in Iskandarani (1991). Moreover, we have derived the 
boundary conditions necessary to solve the vorticity equations for all Fourier modes, 
and we now turn to the numerical solution of the vorticity equations. 

4. Vorticity equations 
Following the approach of the two-dimensional formulation (Iskandarani & Liu 

1991), we introduce a transient term in ( 1 )  to allow the nonlinearities to  develop 
gradually. The component form of (1)  becomes 

We adopt the Galerkin-Tau method (Canuto et aZ. 1988) to find the numerical 
solution of (39)-(41). Applying the Fourier-Chebyshev expansions to (39)-(41) yields 
the following system of equations for the Fourier-Chebyshev coefficients : 

'4, m, n = ,z(2) 1 ,  m, n - h2Wx 1.m. n+f  t m ,  n ,  

dwl. m ,  n - - @2(2)  1 , m , n - h 2 W t , m , n + f : , m , n ~  

(43) 

(44) 

(45) 

dr 

dW!m, n - Wv(2)  d r  1 , m , n - h 2 W ~ , m , n + f l m , n ~  

dr  

h = +h(n21cz + m2ki)i, 

Z=O,1,2 ,..., L-2, m = 0 , 1 , 2  ,..., M ,  n = O , f l , + 2  ,..., fN. 
The fi,,,, are the coefficients of the vector components of the nonlinear terms in 
(39)-(41), i.e. 
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with $ 1 9  m ,  ,,(& c, 7) = T,(q) eimceinc which can be viewed as the shape functions. In 
(43)-(45), wf,(:, denotes the Fourier-Chebyshev coefficients of the second derivative 
with respect to q of the k-component (k = x, y,z) of the vorticity vector, i.e. 

l L  

c1 p=1+2,2 
w;;zsn = - E p(P2-J2)  m,  n,  

where co = 2, and c1 = 1 for 1 >, 1. 

at the free surface are rewritten in terms of the Fourier-Chebyshev coefficients 
The boundary conditions ( 5 )  prescribing the x- and y-components of the vorticity 

The enforcement of the tangential velocity components a t  the seabed requires, when 
h + 0, the two constraints 

L 
( - l)bf, m, = ink, v k ,  - imk, uk, nr 

1-0 

L 4A w; 2 
- 7 +- [ink, u”, + imk, v k ,  .I, (49) 

1-0 C [ i n k x w Y , m , n - i m k y w ~ m , n I S , , m ,  n = h2 sinh2A h 

with 

where we have substituted the Chebyshev expansions into the left-hand sides of (28) 
and (29). The S 1 , m , n  can be evaluated by expanding the hyperbolic sine in a 
Chebyshev series (Iskandarani & Liu 1991). 

When A = 0, the two constraints to enforce u : , ~  and v : , ~  on the seabed are given 
by (35) and (36). In  terms of the Fourier4hebyshev coefficients, these constraints 
become 

where 
2/(P - 1) ( I  even) 
-2/(12-4) (1 odd). 

Finally, the solenoidality of the vorticity field at the surface and the seabed gives 
the following conditions : 

L 

l2wtS m ,  = -ih(ink, ~ 2 . ’ ~  + imk, w:,~,), 
1-0 
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Equations (43)-(53) are a system of 3(2N+ 1) (M+ 1) (L+ 1) nonlinear ordinary 
differential equations for the 6(2N+ 1) (M + 1) (L  + 1) Fourier-Chebyshev coefficients 
of the vorticity and velocity. The Cauchy-Riemann problem supplies the remaining 
half of the equations. The nonlinear terms in the governing equations link all the 
Fourier-Chebyshev modes of the velocity and vorticity components. The boundary 
conditions on the other hand are linear, and (49) and (53) couple the vorticity 
components of each Fourier mode only. 

As in the two-dimensional case (Iskandarani & Liu 1991), the problem is linearized 
by approximating the nonlinear terms with information from a previous time step. 
The system of equations (43)-(45) can then be divided into a (2N+l)(M+l)  
independent sets of ODES for each Fourier mode (m, n). Each set involves only the 
3(L+ 1) Chebyshev modes of the vorticity vector. Moreover (45), subject to (48) and 
(52), determines wf, m ,  independently of the x and y vorticity components. Equations 
(43) and (44), with conditions (46), (47), (49) and (53), are then solved simultaneously 
for w t  m, and w[ m,  when h 4 0. Notice that when either m or n is zero, the x- and 
y-components of the vorticity can be solved separately. In the special case where 
m = n = 0, the vertical component of the vorticity is identically zero, w?,m,n is the 
solution to (43), (46) and (50), and  WE/^,^ to (44), (47) and (51). 

Finite differences are used for the time integration of (43)-(45). The nonlinear 
terms in the equations are integrated explicitly using a second-order Runge-Kutta 
scheme, while the viscous term is integrated implicitly for numerical stability. The 
nonlinear terms are computed efficiently using three-dimensional fast Fourier 
transforms (Gottlieb & Orszag 1977), and the $ rule is implemented to remove the 
aliasing errors. A major advantage of the present scheme is that it maintains a 
solenoidal vorticity field provided that the initial vorticity is solenoidal. Also, the 
velocity field satisfies the continuity equation a t  all times because of the 
Cauchy-Riemann problem. 

5. Mass transport in intersecting wave trains 
The numerical scheme presented in the previous sections will be used to compute 

the mass transport under two progressive waves travelling in different directions. If 
the angle between the two waves is 28, and the x-axis is along the median, the free- 
surface displacement can be described by 

Cf = cosKyycos(K,x-t), ( K , , K ~ )  = K(cos8,sinO) (54) 

and has the shape of a wave progressing in the x-direction with amplitude that varies 
sinusoidally in the y-direction. The antinodes are located at g = 2nx, while the nodes 
are at 6 = (2n+ 1) x, n = 0, 1, . . . . The wavenumber, K, is given by the dispersion 
relation 

where u is the frequency of the wave, g the gravitational acceleration, h the water 
depth, and E a typical wavenumber in the problem. In our example, we will specify 
K and h ;  /3 will be determined from the dispersion relation. 

To find the mass transport, we must calculate the Stokes drift, the steady 
streaming on the seabed, and the components of the steady vorticity a t  the surface. 
The derivation of these terms can be found in the work of Longuet-Higgins (1953), 
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Hunt & Johns (1963) and Liu (1977); only the results will be listed here. The Stokes 
drift is given by 

K3 cos e 
u, = [ ( cos2~cosh2~(~+h) - s in20)  (e- iky~+ei~y~)+2cosh2K(Z+h)] ,  

8pZ cosh2 Kh 

us = 0, 

w, = 0, 

where k, = 2 ~ , ,  and k, = 2 ~ , .  The horizontal vorticity a t  the surface is 

- K4 sinh 2 ~ h  cos 8 
"Y,S = [ cos2 0 e-% Y + 2 + cos2 t9 eiky "1, 

4p2 cosh2 Kh 

and the steady streaming at the seabed is 

K3 cos e 
[3 e-ikvY + 6 + 3 eikv "1, U b  = 

16p2 cosh2 Kh 

(59) 

The zeroth Fourier mode requires information about the net flux in the x- and y- 
directions. Both are assumed to  be zero, and the Eulerian flux must then be equal 
and opposite to the integral of the Stokes drift along the vertical; hence, we obtain 
the following expressions for qz and q,: 

- K~ sinh 2 ~ h  cos 0 
" = 2p2 cosh2 Kh ' 

q, = 0. (63) 

I n  this particular example, the mass transport is uniform in the x-direction as the 
boundary conditions do not depend on the x-coordinate. Hence, all the coefficients 
of the Fourier-Chebyshev modes (0 < 1 < L ,  0 < m < M ,  1 < In1 < N )  are zero, and 
one needs to concentrate on the Fourier-Chebyshev modes (0 < 1 < L ,  0 < m < M ,  0) 
only. 

The first set of experiments held the angle 0 constant a t  45", while S was given the 
successive values lo4, 0.1, and 0.05. Figure 1 shows the variations of the three mass 
transport velocity components, u,, v, and w, in the (y, z)-plane for the viscous limit 
6 = lo4. In  this case, the problem is linear; this is reflected in the transverse 
sinusoidal variations of the three velocity components. The transverse horizontal 
coordinate y has been normalized with the wavenumber k, ; the figures focus on half 
a wavelength only ; the flow in the remaining half wavelength can be deduced from 
symmetry. Figure (1  c) shows the variation of the vertical velocity, w,. It is positive 
throughout the depth for 0 < [ < in, and negative for in < y < x. The particles are 
hence rising gently near the antinode, and sinking near the node. The horizontal 
velocity u, is larger in magnitude than the vertical velocity. It is forward in the 
whole depth under the antinode with maximum value a t  the surface. As we move 
away from the antinode, u, decreases continuously until the flow becomes backward 
near the node. Near the seabed however, u, is always positive. The y velocity 
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-0.5 @$ 

7 . 4  

\ 
OX 

- 0 : : v  2 -0.25 .* 

FIGURE 1. Mass transport velocity for 0 = 45O, h = 1.0, end 8 = 104. (a) urn, ( b )  v,, (c) w,. 

component, urn, is shown in figure (1 b) .  It is positive on the free surface, with particles 
moving away from the antinode towards the node ; the opposite trend can be seen 
near the seabed. Along the lines C = 0, x ,  w, is identically zero. 

When 8 is 0.1, figure 2, new features that are usually associated with Langmuir 
circulation appear (Leibovich 1983). The picture for the horizontal velocity 
component, u,, remains more or less the same, with a decrease in the maximum 
forward velocity at  the free surface. The new features of the flow are mainly in the 
y- and z-components of the velocity. The flow of particles near the surface is now 
opposite to that found in the viscous limit: the particles are drifting away from the 
nodes towards the antinodes. Under the node and antinode, v,  is zero; it is negative 
on the surface and it reaches its maximum negative value close to the antinode. 
Below mid-depth, urn is positive and the drift is toward the node. The most dramatic 
features are in the vertical velocity w,, figure (2c). The gentle upwelling under the 
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OX 

FTGWRE 2. Mass transport velocity for 0 = 45", h = 1.0, and 6 = 0.1: (a) u,, ( b )  v,, (c) w,. 

antinode has now turned into a strong downwelling in the upper part of the flow ; in 
the lower part, near the seabed, the flow is upward. The magnitude of the vertical 
velocity in the upper part has increased to become of the same order as u,. The 
region of strong downwelling is limited to the immediate neighbourhood of the 
antinode. Particles in the upper and lower part of the depth drift towards the level 
of zero vertical velocity ; those that are immediately under the antinodes remain in 
the same plane, as the y-component of the velocity is zero. Away from the antinode, 
and in the upper part of the depth, the fluid is rising to the surface, while near the 
bottom it is drawn towards the seabed. Figure 3 shows vector diagrams of the 
projection of the mass transport velocity on the planes 5 = 0,  in, 7c. Since there is no 
transverse velocity component at the node and antinode, figures ( 3 a )  and ( 3 c )  give 
the total velocity vector. In  the former, the particles converge towards the level 
z = -0.8, while in the latter they diverge from z = -0.75. Midway between the node 
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z 

and antinode, figure ( 3 b ) ,  fluid is rising towards the surface while moving forward 
near the surface and seabed ; the flow is backward in between. Figure 4 is a projection 
of the velocity vector on the plane 6 = 0. Two counter-rotating vortices occupy the 
upper and lower part of the depth. The lower vortex is confined to the proximity of 
the seabed, and its centre is in the middle of the flow region. The upper vortex is 
larger, with its centre close to the antinode of the surface. Figures 5 ( a )  and 5(b )  show 
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0, > =- > > - > > > >  < c  c < < c c c c 

the paths of particles in the lower and upper vortex. I n  the lower vortex, the particle 
moves forward (in the direction of wave propagation) in a right-hand spiral while 
remaining close to the seabed. The motion in the upper vortex is more complex. The 
particle moves forward when it sinks near the antinode, and backward when it rises 
next to  the nodal line; when the particle returns to its initial elevation, the net 
movement is a backward drift in the z direction. Figure (5.5) is the trajectory of a 
fluid particle on the surface where the vertical drift is zero. Away from the nodes, 
fluid a t  the surface is entrained towards the antinodes, and the particles accumulating 
there form parallel streaklines that move in the direction of wave propagation. 

The value of 6 was decreased further to 0.05. Most of the general features reported 
for the S = 0.1 remained unchanged. The effects of the angle 0 on the mass transport 
was studied by decreasing 6' from 45" to  30" and 15O, and keeping 6 = 0.1. In  general, 
the downwelling near the antinode becomes stronger and it becomes narrower as the 
two waves become more aligned; the upwelling velocity becomes smaller and spreads 
to a larger region. The features are similar to those observed for 0 = 45", and will not 
be reported here. The details are given in Iskandarani (1991). 

In  his investigations on Langmuir circulation, Leibovich (1977) studied the steady 
flow under two intersecting wave trains in water of infinite depth. He derives the 
same field equations as the ones considered here; the boundary conditions are, 
however, different. Leibovich's model attempts to  relate the Langmuir circulation to 
the wind a t  the surface where the wind stress generates a steady vorticity component 
W Y S  s. In  the present model, this vorticity is the result of the O(a) velocity fluctuations 
within the free surface shear layer. Leibovich attributes the Langmuir circulation to 
the interaction between the wind stress and the cross-stream variations of the Stokes 
drift. The major objection to this 'wave ' model is that the intersecting waves had to 
be phased locked for a time much longer than the wave period, an unlikely 
occurrence in nature. Other models of Langmuir circulation trace the generation of 
the vortex rolls to an inviscid instability, with cross-stream variations, of a steady 
uniform flow (Craik 1977). 

The model presented here suffers from the same shortcoming as the wave model: 
the waves have to be phase locked for a long period of time. It also provides no role 
for the wind, albeit for the generation of two intersecting waves. The causes of the 
mass transport reside solely in the wave motion : the Stokes drift in the entire flow, 
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FIGURE 5. Particle trajectories for the case 0 = 4 5 O ,  h = 1.0 and 8 = 0.1 : (a) in the lower vortex, 

( b )  in the upper vortex, and (c) on the surface. 

the steady vorticity at  the edge of the surface boundary layer, and the steady 
streaming at  the edge of the seabed boundary layer. On the other hand, the present 
approach accounts explicitly for the wave motion, for the Stokes layers that develop 
at O(a) and O(a2)  near the seabed and the free surface, and for the presence of the 
seabed. 

5.1. Computational considerations 
The stability of the computations depends on the number of Chebyshev modes (L)  
and Fourier modes ( M , N ) ,  and the choice of the time step AT. This choice is a 
compromise between wanting a large time step to arrive to the steady solution 



432 M .  Iskandarani and P .  L.-F. Liu 

quickly, and the need of a small time step for a gradual development of the 
nonlinearities. 

The number of Fourier modes kept in the computations determines the accuracy 
of the solution; it was hence decided to increase the number of Fourier modes until 
the largest magnitude of the Chebyshev coefficients, in the highest Fourier mode, is 
less than i.e. 

max l w t M ,  +NI < 
O<Z<L 

where k = x, y, or z. The rate of decay of the vorticity coefficients, as the Fourier 
mode increases, is an indicator of the importance of the nonlinearities. These become 
more pronounced as the angle O between the two waves decreases. For the case 
h = 1, and 6 = 0.1, the number of Fourier modes, M ,  had to be increased from 
45 to 63 and 159 for 8 equal to 45", 30" and 15'; the time step was held constant at  
AT = 0.01. For the case 6 = 0.05, 84 Fourier modes were enough to guarantee 
convergence; the time step was held at AT = 0.005. The Chebyshev coefficients 
decayed at  the same rate, for a fixed Fourier mode, for the three angles considered ; 
40 Chebyshev modes were enough to reproduce the vertical dependency of the flow. 

As indicated earlier, the initial guess for the vorticity coefficients has to be 
solenoidal to maintain a solenoidal vorticity throughout the computations. The 
initial guess was chosen as a state of rest where all the coefficients are zero. This guess 
was then iterated until the maximum change in all Fourier-Chebyshev coefficients of 
the vorticity was smaller than lop6, 

Iwk, t + l  -&. t max 1. m, n 1, m, nl < lo-'. 
O < l < l , O < m < M , - N < n < N  

6. Mass-transport under a standing wave 
In this section we consider the mass-transport under a three-dimensional standing 

wave. All the forcing terms are zero (Stokes drift and vorticity at free surface) except 
for the Eulerian streaming at  the seabed. The free surface can be described by 

COS K, COS Ky y COS t .  (64) 

The nodes are located along the lines 

<=2KzX=k,X=(2i+1)7C, i = o , & l , f 2  ,..., 
5=2KyY=kyy=(2j+1)7C, j = o , f l , f 2  ,..., 

while the antinodes have coordinates 

(=2iK,y=2jX, ( i , j ) = O , * l , & 2  ).... 
The Eulerian streaming is 

- K3 COS 8 
U b  = [3 cosy+ (1  + 2 cos2 S)] sin 5, 

16P2 cosh2 ~h 

- K~ sin 0 
16P2 cosh2 Kh 

vb = [3 cost+ (1  + 2 sin2 O)] sin 6. 

The depth and wave angle were held at h = 1.0 and O = 45", while the parameter 
S was given the successive values 100,0.1, and 0.05. Only the case 6 = 0.05 is shown 
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FIGURE 6. Projection of mass transport velocity under a standing wave on the planes (a) z = - 1.0, 
( b )  z = -0.8, (c) z = -0.6, (d )  z = -0.4, (e) z = -0.2, and (f) z = 0. 0 = 45", h = 1.0, and 6 = 0.05. 

here. The highest Chebyshev mode was held at  L = 30, while the Fourier modes 
( M , N )  were increased from 5, to 10 and 20 as S was decreased. The time step was 
also decreased with S to stabilize the computations. 

Figure 6 ( a )  gives a vector diagram of the flow on the seabed. Because of the 
symmetry, we expect the steady flow to take place in closed cells between two 
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FIQURE 7. Vertical mass transport velocity at different elevation under a standing wave ; 
8 = 45O, h = 1.0 and 6 = 0.05: (a) z = -0.8, ( b )  z = -0.6, (c) z = -0.4, (d) z = -0.2. 

consecutive nodes and antinodes in the x- and y-directions. Figure 6(bf) is a series 
of vector diagrams of the Lagrangian velocities, urn and wrn, a t  several elevations. The 
vertical velocity a t  these sections is shown in figure 7 .  Near the seabed, the fluid 
converging radially towards the antinode (5 = 0 , 5  = 0) turns into an upward- 
shooting jet. This jet entrains fluid as it goes upward and reaches its maximum 
strength around mid-depth. The jet then weakens as it approaches the surface where 
it disappears. The flow becomes horizontal and goes towards the points (5 = 0, 
5 = f 7c) and (6 = & 7c, 5 = 0) where it turns downward. This downward drift closes the 
recirculation pattern and feeds fluid into the seabed region. 

Secondary circulation cells exist near the nodes (6 = + x ,  6 = +K), figure 8. The 
upward drift in these cells is much weaker than in the jet under the antinode. The 
vertical velocity under the antinode increases as 6 decreases, figure 9, and the 
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FIGURE 8. Projection of mass transport velocity under a standing wave on the plane f = x ;  

0 = 4.5'. h = 1.0 and S = 0.05. 
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FIGURE 9. Vertical transport velocity under antinode = g = 0 for (a) S = 0.04 (-), 
( b )  6 = 0.05 (-.-), (c) 6 = 0.1 (---), and (d) 6 = 100.0 (----); 6 = x .  B = 4 5 O ,  h = 1.0. 

location of the maximum shifts upward. Figures 10 and 11 give the vertical profile 
of the x-component of the velocity and vorticity vectors at = g = in for decreasing 
values of S. The velocity profiles do not reveal the growth of a Stuart layer and the 
vertical gradient near the seabed is almost constant for the three values of S. Only 
near the surface is there a noticeable change in the profile. The vorticity profile, on 
the other hand, shows an increase in its vertical gradient near the seabed as S is 
decreased. 
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(b )  6 = 0.05 (-.-), (c) 6 = 0.10 (---), and (d) 8 = 100.0 (----). 0 = 45", h = 1.0. 
FIGURE 10. Vertical profile of mass transport velocity, u,, at 5 = C = for ( a )  S = 0.04 (-), 

-0.5 - 0.4 -0.3 -0.2 -0.1 0 
W* 

FIGURE 11. Vertical profile of vorticity, wz, at = 5 = ;X for (a)  S = 0.04 (-), ( b )  S = 0.05 (-.-), 
(c) S = 0.10 (---), and (d )  6 = 100.0 (----). 0 = 45O, h = 1.0. 
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7. Conclusion 
A Fourier-Chebyshev spectral method has been presented for the solution of the 

three-dimensional mass transport equations when the steady flow is periodic in two 
horizontal directions. The method is based on a velocity-vorticity formulation. The 
no-slip boundary conditions on the velocity at  the seabed have been recast into two 
constraints on the vorticity coefficients of each Fourier mode. 

The numerical solution was employed to investigate mass transport under two 
intersecting wave trains. The flow pattern obtained resembled the Langmuir 
circulation pattern. The flow depended strongly on the water depth and the 
parameter 6. For intermediate water depth, h = 1.0, the viscous solution showed the 
development of only one vortex. When 6 was decreased to 0.1, two counter-rotating 
vortices appeared. Fluid in the upper vortex entrained the fluid at  the surface 
towards the antinode. In the deep water case, h = 3.0, the opposite trend was seen, 
and only one vortex developed. 

The mass transport under a three dimensional standing wave has also been 
computed. The solution shows the formation of a strong jet under the antinodal line, 
and the development of several circulation cells in the symmetry planes. 
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